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What are fractons?

* New models of topological order, originally in three spatial dimensions

* Log(Ground state degeneracy) linear in system size, ground states
indistinguishable by local measurement

* Immobile excitations (cannot be moved by any local operator). Sometimes also
subdimensional excitations



Lightning history lesson

* Prehistory: Chamon 2005, Bravyi 2011

* Haah 2011

* Yoshida, various quantum information people...2011-2015
* Vijay-Haah-Fu (2015, 2016), Pretko 2016

* Prem-Haah-Nandkishore (2017), Ma-Lake-Chen-Hermele (2017), Vijay
(2017), Pretko (2017), Hsieh-Halasz (2017), Slagle-(Y.B.)Kim (2017),
Prem-Pretko-Nandkishore (2017), Ma-Schmitz-Parameswaran-
Hermele-Nandkishore (2017), Devakul-Parameswaran-Sondhi (2017),
He-Zheng-Bernevig-Regnault (2017)...
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Ideas from all these fields inform study of fractons, and insight from fractons may inform all these fields



From fracton particle physics to fracton
condensed matter

* Most work to date: studying ground states (fractonic vacuum) or few
fracton problems (particle physics of fractons)

* My interest: fractons at finite density (condensed matter physics of
fractons)

* Two directions

* Discrete fracton models at finite energy density
* Continuous fracton models at finite charge density



Fracton dynamics at non-zero energy density

Prem, Haah, Nandkishore, Phys. Rev. B 95, 155133 (2017)

Work with familiar models (X-cube, Haah’s code)

Language of perturbed stabilizer codes, augmented by concepts from MBL/ETH



X cube model  visy, Haah, Fu 2016
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X-Cube Model: Excitations
o(0)

* Fracton = -1 e-value of Cubic term
* No local operator can create

single fractons. //
* Isolated fractons created at ends

of membrane operator. /[ /L
e Cannot move fractons by acting / /

with any local operator (without

creating additional excitations)

e Totally immobile excitations




X-Cube Model: Excitations

Bound state of two fractons — created by Wilson line-like operator
— mobile in plane perp. to “stack”
Subdimensional excitations

Vv ‘7L’




Dynamics of fracton models

* |solated fractons are completely immobile

* At zero energy density (subextensive number of excitations), the
system retains forever a memory of its initial conditions under closed
system Hamiltonian dynamics

* Many body localization in a translation invariant Hamiltonian! (but
only at zero temperature) (Kim and Haah, 2015)

* What about finite energy density (extensive number of excitations?)



Type | Fractons at Finite Energy Density
Fractons, bosons, composites at temp. T << W W = Charge gap (=4 in X-Cube)

W W oW

Gapped =2 density fixed by T: nf~e 2T, ny~e T, ne~e 7

Single fracton hop takes system off energy /

shell by W. '
a) b) /

Mobile composites act as - . |

heat bath with bandwidth A << W




e Similar problems addressed in MBL literature (RN, Gopalakrishnan,
Huse 2014; Gopalakrishnan and RN, 2014, RN and Gopalakrishnan,

2016)

* ‘Borrow’ those analyses, apply to fractons

Usual case of activated transport:
Ty ~ o~ o=A/T

Arrhenius relaxation.

Exponential slowness due to rarity of
charge carriers.

Mobility typically O(1).

Fractons:
[' ~ nf 1max (.{'f_T"LVT_ {-,:_Tr"i"r/ii) ~ng {_.—H’VT
uASymptOt_iC M BL”

Exponentially suppressed due to rarity
of charge carriers.

Additional suppression due to mobility.



Equilibration b/w Fractons & Bath

Consider equilibration between fractonic and mobile sectors
Write down rate equations and solve.

Charged sector (fractons), initial temp. T0
Thermal sector (bosons & composites), initial temp. T,(© >> T0

dt 112
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Logarithmic Cooling of Bath
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Logarithmic Heating of Fractons
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Analytic
solution
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Connections to classical glass

* Kinetically constrained models’ of classical glass have dynamical rules
exhibiting "dynamical facilitation’ (excitations can only move if next to
other excitations)

e Such dynamical rules, imposed by hand, give glassy dynamics and
logarithmic relaxation

* Here these dynamical rules emerge from Hamiltonian dynamics.



Haah’s Code (Type Il)

k/ AT H=-J) GI-) G

|

|

I Defined on Cubic Lattice.
|

|

- ——— 7 n Two qubits on each vertex.
/7
P
/
o

Sub-extensive log(GSD) on 3-
torus (but diverging in the
thermodynamic limit)

hl
1|

Z 1,9k, _m, n_r, 7
G o Crzu’z O-z u’zgz H’z Crz uz

C

X . 7 k.l -m. n __p__p
GC'. — O-;tﬂfco-mﬂxgx pﬂxgigi J.Haah (2011)



Haah’s Code (Type Il)

Move fractons by overlaying fractal
operators. Each time spacing of fractons

doubles

To move a distance R, overlay fractal

operators log(R) times

If only local operators available, the

maximum energy cost of intermediate

states is proportional to the number of

1T =7 1T fractal overlays required — energy barrier

to move fractons ~ clog(R)

Bravyi &Haah (2011) 18



Sub-diffusion in type Il models

Type Il fracton system in contact w/ narrow bandwidth heat bath of composites at

T A< W

Initialise system with isolated fracton.

Logarithmic energy barrier: energy cost for moving distance R=W clog R

Moving a distance R takes time cW -

t=(R) A~ ; A=min(7T,A)

.~

A< W Strong sub-diffusive behaviour in translation invariant 3D model



“Super-Arrhenius” scaling

System will eventually equilibrate : borrow energy from heat bath to create
fractons in groups of 4.
Redistribute over system.

To achieve thermal density of fractons  TLf ~~ GXI)(—I/'V/QT)
Need to move fractons over length-scale ( ~ exp(QHfr/ST)

Equilibration time follows “super-Arrhenius” scaling

W2
/
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Fracton Dynamics Summary

* Fracton models are natural translationally invariant models exhibiting
glassy dynamics
e Approach to equilibrium is logarithmic in time
* Fracton mobility is supressed (potentially super-exponentially)
e Subdiffusion up to (potentially super-exponentially) long time

* Question of ongoing interest here e.g. U(1) variants of Haah’s code
may relax (preliminary) only on timescales exp(exp(exp(1/T)))



Thermodynamics of continuous fracton models
Prem, Pretko, Nandkishore, arXiv: 1709.09673

* Now consider correlated (ground state) physics of fractons at finite
charge density.

* Need U(1) model to be able to control charge density independently.
* Introduce new language - "higher rank gauge theory’



Fractons as higher rank gauge theories

* Pretko (2016)
e Continuum U(1) gauge theory with symmetric tensor gauge fields
* Generalized Gauss Law constraint e.g. 'az.ajEij = p.

* Additional conservation law /fp: /wkaiajEz’j _ _/ajEkj _ 0

* Only processes that conserve dipole moment are allowed.

e Charges are immobile (fractons). Cannot be created or moved by any local
operator

e Lagrangians with symmetric tensor fields as test bed for fractons



Fractons at finite density

* Power law repulsion r" (different n for different theories)

e Attraction exp(-r) from kinetic energy (fractons can move only when
close to other fractons, not when isolated)

* Competition of kinetic and potential energy gives rich phase diagram
* n>3 ‘gravitational collapse’
* n<0 "Wigner crystal’
e 0<n<3 'Micro-emulsions’ - clusters of finite size



Finite density of dipoles

* Conserved dipole moment means we have a second (vector!)
chemical potential to play with.

* Turn on a finite density of dipoles and ask what happens.
* For now, consider only dipoles of a particular orientation.



Dipolar Fermi liquid

* Simplest higher rank theory in 3D has (angle dependent but always
repulsive) 1/r interactions between fermionic dipoles

e Conjecture: Fermi liquid state (Friedel oscillations etc), also screening

* Test fractons of opposite charge have ~r attraction, which gets
screened to log(r)

* Competition between log(r) screened attraction and entropy

 Temperature driven (KT like) transition whereby dipoles unbind into
fractons - A finite temperature (Fracton) transition.



Fractonic quantum Hall states

* No fractonic stabilizer codes in d=2
* Higher rank gauge theories in d=2 unstable to Polyakov confinement

 This problem can be circumvented by adding a (higher rank) Chern
Simons term (Pretko 2017) yielding fractonic theories in d=2

* These Chern-Simons fractonic theories may be understood (Prem-
Pretko-Nandkishore) as states with a finite density of dipoles in 2D
bulk, where dipoles are placed in gquantum Hall state (integer or
Laughlin)



Fracton guantum Hall continued

e (skipping all technical details)
* Quantum Hall states of fractonic charge (also thermal Hall effect)

e Can deduce edge theory, which is scale invariant 1D field theory
(CFT?)
* Edge theory has gapless fracton excitations!

e Towards fractons in 1D? Treated via CFTs instead of stabilizer codes? Work in
progress.



Conclusions

* Fractons at finite energy density have rich dynamics

* Fractons at finite charge density (even at zero temperature) have rich
thermodynamic structure.

* We have just scratched the surface - there is lots to be done!
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